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SUMMARY

The first three members of the ErbB family of recep-
tor tyrosine kinases activate a wide variety of signal-
ing pathways and are frequently misregulated in can-
cer. Much less is known about ErbB4. Here we use
tandem mass spectrometry to identify 19 sites of ty-
rosine phosphorylation on ErbB4, and protein micro-
arrays to quantify biophysical interactions between
these sites and virtually every SH2 and PTB domain
encoded in the human genome. Our unbiased ap-
proach highlighted several previously unrecognized
interactions and led to the finding that ErbB4 can
recruit and activate STAT1. At a systems level, we
found that ErbB4 is much more selective than the
other ErbB receptors. This suggests that ErbB4
may enable ErbB2 and ErbB3 to signal independently
of EGFR under normal conditions, and provides
a possible explanation for the protective properties
of ErbB4 in cancer.

INTRODUCTION

The ErbB family of receptor tyrosine kinases (RTKs) comprises

four single-pass transmembrane proteins which are expressed

in a wide variety of cell types and are responsible for mediating

a diverse range of cellular outcomes, including proliferation, mi-

gration, differentiation, survival, and apoptosis (Porter and Vail-

lancourt, 1998; Schlessinger and Lemmon, 2003; Yarden and

Sliwkowski, 2001). Ligand binding to the extracellular domain

of a receptor promotes either homo- or heterotypic receptor

dimerization and activation of the intracellular tyrosine kinase

domain. Activated receptors then phosphorylate each other on

a number of tyrosine residues, which serve as docking sites for

downstream enzymes or adaptor proteins. The proteins that

are recruited directly to the phosphorylated receptors often con-

tain Src homology 2 (SH2) domains or phosphotyrosine binding

(PTB) domains, which recognize these phosphotyrosine (pTyr)

sites in a sequence-specific fashion. Thus, one way to learn

about the signaling pathways that are activated by a receptor
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is to uncover interactions between its sites of tyrosine phosphor-

ylation and SH2 or PTB domains (Jones et al., 2006; Kavanaugh

and Williams, 1994; Songyang et al., 1993, 1994).

The ErbB family of RTKs is unique in that two of its members

are partially defective: ErbB3 does not have a functional kinase

domain (Kim et al., 1998; Yarden and Sliwkowski, 2001) and

ErbB2 does not recognize an extracellular ligand (Marmor

et al., 2004; Yarden and Sliwkowski, 2001). Although much has

been learned about the intracellular signaling events initiated

by EGFR, ErbB2, and ErbB3, much less is known about ErbB4.

Like EGFR, ErbB4 has a functional kinase domain and several

extracellular ligands that induce either homo- or heterodimeriza-

tion (Carpenter, 2003). Unlike the other ErbB receptors, however,

ErbB4 can signal in two ways: it can dimerize with another ErbB

and recruit proteins to the plasma membrane (Cohen et al., 1996;

Jones et al., 1999), or it can undergo proteolytic cleavage in a g-

secretase-dependent manner, translocate to the nucleus, and

act as a nuclear chaperone (Ni et al., 2001; Williams et al., 2004).

Although most disease-related studies of ErbB4 have focused

on its role in neuronal signaling and schizophrenia (Norton et al.,

2006; Silberberg et al., 2006), recent reports suggest that ErbB4

also plays a role in cancer, but in a different way than the other

ErbB receptors. In the case of bladder cancer, ErbB4 and one

of its ligands, Heregulin-4, appear to be protective: their expres-

sion correlates with prolonged patient survival, and this effect is

strongest when either EGFR and ErbB3, or ErbB2 and ErbB3, are

also expressed (Memon et al., 2004, 2006a, 2006b). A similar

pattern is observed in mammary carcinomas. It is well estab-

lished that EGFR and ErbB2 are overexpressed in many breast

cancers, and their overexpression correlates with poor progno-

sis (Klijn et al., 1992; Slamon et al., 1987). In contrast, ErbB4 ex-

pression correlates with lower tumor grade and more favorable

prognosis (Barnes et al., 2005; Tovey et al., 2004). Interestingly,

coexpression of ErbB4 with ErbB2 in medulloblastomas and

ependymomas—where EGFR and ErbB3 are absent—leads to

an increased proliferative index of the tumor and decreased pa-

tient survival (Gilbertson et al., 1997, 2002).

We asked whether a broad and unbiased investigation of the

signaling capabilities of ErbB4 could shed light on its biological

role in signaling, as well as on how its overall properties

differ from those of the other ErbB receptors in cancer. We pre-

viously reported high-throughput methods to uncover binding
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Figure 1. Identifying Sites of Tyrosine Phosphorylation on ErbB4

(A) Experimental procedure for identifying pTyr sites. ErbB4 is overexpressed in HEK293T cells and phosphorylated receptor is isolated by pTyr immunoprecip-

itation (IP) and gel electrophoresis. pTyr sites are identified by mHPLC-MS/MS, using both untargeted and targeted methods.

(B) ErbB4 is detected by western blotting (WB) in HEK293T cells transfected with ErbB4, but not in cells transfected with GFP. Western blots with an anti-pTyr

antibody show that ErbB4 is phosphorylated independently of stimulation with Heregulinb1 (HRGb1). ErbB4, recovered by pTyr IP from ErbB4-transfected cells,

is obtained at sufficiently high levels to visualize by Coomassie staining.

(C) Representative MS/MS spectrum, showing the identification of Tyr1258 as a site of phosphorylation.

(D) Schematic representation of ErbB4, showing which of the intracellular tyrosine residues is phosphorylated.
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interactions between phosphopeptides, representing sites of

tyrosine phosphorylation on RTKs, and recombinant SH2 or PTB

domains, representing full-length signaling proteins (Gordus

and MacBeath, 2006; Jones et al., 2006). By probing protein

microarrays comprising most of the SH2 and PTB domains en-

coded in the human genome with eight concentrations of each

fluorescently labeled phosphopeptide, we were able to obtain

equilibrium dissociation constants (KDs) for all possible do-

main-peptide interactions with KD % 2 mM. Because EGFR,

ErbB2, and ErbB3 have been studied extensively, many—if not

all—of their pTyr sites are known. As such, we were able to con-

struct near-complete quantitative interaction maps for these

receptors (Jones et al., 2006).

To our knowledge, however, there are no published reports

identifying sites of tyrosine phosphorylation on ErbB4, although

peptide competition experiments suggest that tyrosines 1056,

1188, and 1242 are phosphorylated (Cohen et al., 1996). Here

we use tandem mass spectrometry (MS/MS) to identify 19 sites

of tyrosine phosphorylation on ErbB4 and protein microarrays to

construct a quantitative signaling map for this receptor. This

broad and unbiased approach revealed several new interac-

tions, including specific interactions between two pTyr sites on

ErbB4 and the core domain of signal transducer and activator

of transcription 1 (STAT1). Consistent with these biophysical

data, we find that STAT1 copurifies with ErbB4, is phosphory-

lated on Tyr701, and forms a STAT1/STAT1 homodimer in

ErbB4-transfected cells. On a broader level, our microarray ex-

periments show that ErbB4 is very different from the other

ErbB receptors: it is much more selective and does not interact

with any proteins that are not also recruited by at least one of the

other ErbBs. Based on these findings, we submit that ErbB4 may

act under normal conditions to furnish the missing functions of

ErbB2 and ErbB3, and may play a protective role in cancer by

buffering the oncogenic effects of heterodimers formed between

the other three ErbB receptors. Importantly, the methods de-

scribed here are not specific to ErbB4 and so can be applied

in a systematic fashion to the study of other RTKs where little

is known about their signaling properties.

RESULTS AND DISCUSSION

Identifying Sites of Tyrosine Phosphorylation on ErbB4
To identify sites of tyrosine phosphorylation on ErbB4, we fol-

lowed the strategy outlined in Figure 1A. The full-length coding

region of ErbB4 was transfected into human embryonic kidney

(HEK) 293T cells, which normally do not express any of the

ErbB receptors at levels detectable by immunoblotting. After se-

rum starvation, the transfected cells were stimulated for 15 min

with Heregulinb1 (HRGb1), a potent ligand of ErbB4 that pro-

motes the formation of ErbB4 homodimers. Immunoblotting re-

vealed that ErbB4 was expressed at high levels and that it was

phosphorylated on tyrosine residues independently of treatment

with HRGb1 (Figure 1B). Autoactivation of ErbB4 is not surpris-

ing, because other RTKs have also been observed to autoacti-

vate when transfected into HEK293T cells (Hinsby et al., 2003)

and ErbB2 is well known to autoactivate when overexpressed

(Yarden and Sliwkowski, 2001).

To enrich for tyrosine-phosphorylated ErbB4, we performed

an immunoprecipitation (IP) using a mixture of anti-pTyr anti-
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bodies. We then separated phospho-ErbB4 from other pTyr-

containing proteins by one-dimensional SDS-polyacrylamide

gel electrophoresis (Figures 1A and 1B). Immunoblotting con-

firmed that ErbB4 and pTyr were detected at the same molecular

weight in ErbB4-transfected cells; no corresponding band was

observed in cells transfected with the coding region for green

fluorescent protein (GFP). Moreover, enough phospho-ErbB4

was recovered to visualize its band by Coomassie staining

(Figure 1B), thereby enabling near-complete coverage of the re-

ceptor in our subsequent MS/MS experiments. We chose to per-

form the IP using a mixture of anti-pTyr antibodies rather than an

anti-ErbB4 antibody because we wanted to separate phosphor-

ylated receptor from nonphosphorylated receptor. Phosphory-

lated peptides are often more difficult to detect by mass spec-

trometry than nonphosphorylated peptides, so minimizing the

presence of nonphosphorylated peptides increases sensitivity.

To identify pTyr sites, the Coomassie-stained band was

subjected to in-gel proteolytic digestion and analyzed by mi-

cro-high-performance liquid chromatography (mHPLC) coupled

with nanospray MS/MS. To maximize coverage, we split the

sample in half, digested each portion with either chymotrypsin

or elastase, and performed separate untargeted analyses, sub-

jecting the six most abundant ions in each survey scan to MS/

MS. This process revealed 7 pTyr sites (Figure 1D). We then per-

formed targeted analyses of the same samples, selecting ions of

the expected m/z during the appropriate retention-time window

of the mHPLC run. These targeted analyses enabled us to select

ions that were previously ignored in the untargeted runs, reveal-

ing an additional 9 sites (Figure 1D). Finally, we performed

targeted runs on trypsin-digested phospho-ErbB4, revealing

an additional 3 sites (Figure 1D). Overall, we observed peptides

spanning >95% of ErbB4, including 25 of the 28 intracellular

tyrosine residues (see Figure S1 available online) and found

evidence for 19 sites of tyrosine phosphorylation (Figure 1D).

No evidence was found for phosphorylation of tyrosine resi-

dues in the extracellular portion of the receptor or in the kinase

domain, with the exception of Tyr875, which lies in the activation

loop of the kinase and was therefore expected to be phosphor-

ylated. These negative observations strongly suggest that ErbB4

is correctly folded and appropriately inserted in the plasma

membrane. As further support, when ErbB4 was expressed

with an epitope tag placed N-terminal to its signal peptide, the

receptor was produced but not tyrosine phosphorylated (data

not shown). This shows that when ErbB4 is inappropriately local-

ized, it is not subject to aberrant phosphorylation.

Interestingly, all but one of the tyrosine residues that are

located outside the kinase domain were found to be phosphory-

lated. Although our data do not provide information on the stoi-

chiometry of phosphorylation, they show that these tyrosines

are able to serve as substrates of the ErbB4 kinase, or of other

intracellular tyrosine kinases, within a cellular context. Although

we found more sites than have previously been observed on

any other RTK, we note that ErbB4 has more intracellular tyro-

sine residues than most other receptors. It is not unusual to

find evidence for phosphorylation on nearly every tyrosine in

the C-terminal tail of an RTK. For example, evidence has been

found for the phosphorylation of every tyrosine in the C-terminal

tail of EGFR and all but one tyrosine in the C-terminal tails of

FGFR1 and IGF1R (for a summary of these investigations, see
ier Ltd All rights reserved
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Kaushansky et al., 2008). We therefore set out to conduct a broad

and unbiased study of pTyr-dependent protein recruitment to

ErbB4 by testing and quantifying biophysical interactions be-

tween these newly found sites of tyrosine phosphorylation and

a large collection of human SH2 and PTB domains.

Defining a Quantitative Protein Interaction
Map for ErbB4
To study the interaction of SH2 and PTB domains with individual

sites of tyrosine phosphorylation on ErbB4, we synthesized

pTyr-containing phosphopeptides as surrogates for the full-

length receptor. Structural studies have shown that recognition

can occur as far upstream as the �7 position of the peptide for

some PTB domains (Eck et al., 1996; Zhou et al., 1995, 1996)

and as far downstream as the +5 position of the peptide for

some SH2 domains (Case et al., 1994; Lee et al., 1994; Yaffe

et al., 1997). To ensure that we included all relevant residues,

we synthesized 18 residue phosphopeptides that featured 9 res-

idues upstream of the pTyr and 7 residues downstream (Table 1).

An Asp residue was appended to the C terminus of each peptide

to promote solubility and a fluorescent dye was appended to the

N terminus to visualize binding. After purifying the peptides by

reverse-phase HPLC, we probed protein microarrays compris-

ing 96 SH2 domains and 37 PTB domains with eight concentra-

tions of each peptide ranging from 10 nM to 5 mM. The resulting

data were fit to an equation that describes saturation binding

(Jones et al., 2006), yielding equilibrium dissociation constants

Table 1. Phosphopeptides Derived from Sites of Tyrosine

Phosphorylation on ErbB4

pTyr Site Peptide Sequence

ErbB4-875 dRLLEGDEKEpYNADGGKMD

ErbB4-1035 dQAFNIPPPIpYTSRARIDD

ErbB4-1056 dEIGHSPPPApYTPMSGNQD

ErbB4-1066 dTPMSGNQFVpYRDGGFAAD

ErbB4-1081 dAAEQGVSVPpYRAPTSTID

ErbB4-1128 dVQEDSSTQRpYSADPTVFD

ErbB4-1150 dPRGELDEEGpYMTPMRDKD

ErbB4-1162 dPMRDKPKQEpYLNPVEEND

ErbB4-1188 dDLQALDNPEpYHNASNGPD

ErbB4-1202 dNGPPKAEDEpYVNEPLYLD

ErbB4-1208 dEDEYVNEPLpYLNTFANTD

ErbB4-1221 dFANTLGKAEpYLKNNILSD

ErbB4-1242 dAKKAFDNPDpYWNHSLPPD

ErbB4-1258 dPRSTLQHPDpYLQEYSTKD

ErbB4-1262a dLQHPDYLQEpYSTKYFYKD

ErbB4-1266a dDYLQEYSTKpYFYKQNGRD

ErbB4-1268 dLQEYSTKYFpYKQNGRIRD

ErbB4-1284b dRPIVAENPEpYLSEFSLKD

ErbB4-1301 dPGTVLPPPPpYRHRNTVVD

All peptides were labeled on their N terminus with 5(6)-TAMRA (denoted

‘‘d’’) and contained a C-terminal Asp residue. pY, phosphotyrosine.
a No product of the correct molecular weight was obtained for these

peptides.
b This peptide exhibited high levels of background binding on the protein

microarrays, precluding an analysis of its interactions.
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(KDs) for each domain-peptide interaction (Figure 2; Table S1).

As positive controls, we also synthesized peptides correspond-

ing to every known site of tyrosine phosphorylation on EGFR,

ErbB2, and ErbB3 and analyzed these peptides along with the

ErbB4-derived peptides. These data, which recapitulate our pre-

vious results with few exceptions (Jones et al., 2006), are also

provided in Table S1. Any discrepancies between our previous

results and these new data arise either from minor differences

in KD values that cause interactions to pass the 2 mM threshold

in one data set but not the other, or from improvements in the

quality and concentration of the spotted domains in the current

version of our microarrays.

The interaction map of Figure 2 provides an unbiased view of

ErbB4, showing biophysical interactions between phosphopep-

tides and SH2 or PTB domains derived from signaling proteins.

Which proteins are actually recruited in a given cell will depend

on many additional factors, including the concentrations of the

proteins in the vicinity of ErbB4 and how they interact with

each other. As such, this diagram should be viewed as a quanti-

tative map of the receptor, rather than as a depiction of protein

recruitment in any particular cell type or cell state. In addition,

the map of Figure 2 is based on our identification of pTyr sites

on ErbB4. It is possible that some of these sites are only phos-

phorylated in response to certain ligands, or by nonreceptor

tyrosine kinases that are only expressed in certain cells. In

addition, it is possible that some of the pTyr sites that we identi-

fied are phosphorylated only when the receptor is autoactivated

by overexpression. Thus, if anything, this map overrepresents

the signaling properties of ErbB4, rather than underrepresents

them.

The observed biophysical interactions with ErbB4-derived

peptides are consistent with previous studies of ErbB4 signaling.

For example, ErbB4 has been shown to activate the mitogen-ac-

tivated protein kinase (MAPK) signaling cascade (Kainulainen

et al., 2000), and peptide competition studies have implicated

Tyr1188 and Tyr1242 as direct recruitment sites for Shc1 (Cohen

et al., 1996). Consistent with this finding, we observed strong in-

teractions (KD < 1 mM) between the PTB domain of Shc1 and

phosphopeptides derived from pTyr1188 and pTyr1242 (Fig-

ure 2). Likewise, the Cyt1 isoform of ErbB4, but not the Cyt2

isoform, has previously been shown to activate Akt, which lies

downstream of phosphoinositide 3 kinase (PI3K) (Kainulainen

et al., 2000). In addition, peptide competition studies have impli-

cated Tyr1056 as a recruitment site for PI3K (Cohen et al., 1996).

Consistent with these findings, we observed strong interactions

between the SH2 domains of all three isoforms of PI3K’s regula-

tory subunit and pTyr1056 of ErbB4. This tyrosine is present in

the Cyt1 isoform of ErbB4, but not in the Cyt2 isoform.

ErbB4 Activates STAT1 in HEK293T Cells
The protein microarrays also revealed interactions that, to our

knowledge, have not previously been reported. Interactions

were observed between ErbB4-derived phosphopeptides and

the SH2 domains of Abl2, Src, Syk, Crk, CrkL, Ras-GAP, Vav2,

PLCg2, Cbl, and STAT1 (Figure 2A). We asked whether the infor-

mation uncovered by these microarray experiments could be

used to discover previously unrecognized signaling events medi-

ated by ErbB4. To address this question, we focused on the

observed interactions between ErbB4 phosphopeptides and
08–817, August 25, 2008 ª2008 Elsevier Ltd All rights reserved 811
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Figure 2. Quantitative Protein Interaction Maps for the ErbB Receptors

(A) Interaction map for ErbB4.

(B) Interaction maps for EGFR, ErbB2, and ErbB3.

Red circles represent phosphopeptides, green circles represent SH2 domains, and blue circles represent PTB domains. Lines connecting peptides to domains

indicate observed interactions, colored according to the affinity of the interaction (see legend). The circles that lie outside the rectangle of individual domains, and

are connected by black lines to two other circles, represent tandem domains. They comprise the two domains to which they are connected. The circles that lie

outside the rectangle but are connected to only one other circle represent proteins that contain both an SH2 domain and a PTB domain.
812 Chemistry & Biology 15, 808–817, August 25, 2008 ª2008 Elsevier Ltd All rights reserved
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STAT1. Our microarrays showed that the core domain of STAT1,

which includes its SH2 domain, binds ErbB4 pTyr1035 with a KD

of 1.55 mM (Figure 3A). In addition, STAT1 binds several other

ErbB4 phosphopeptides, but with affinities that fall just below

our KD cutoff of 2 mM. For example, STAT1 binds pTyr1128

with a KD of 2.06 mM (Figure 3A).

STAT1 is a DNA-binding protein that is produced as a mixture

of two isoforms: a (91 kDa) and b (87 kDa). Although it has been

described to induce different outcomes in different cellular envi-

ronments, it is generally considered to be the most pro-apoptotic

of the STAT proteins (Battle and Frank, 2002; Calo et al., 2003;

Kim and Lee, 2007; Schindler, 1998; Stephanou and Latchman,

2003). To test whether ErbB4 activates STAT1 in a cellular con-

text, we transfected HEK293T cells with ErbB4 and measured

the phosphorylation status of endogenous STAT1 using a phos-

phospecific antibody. We found that STAT1 was phosphorylated

Figure 3. ErbB4 Recruits and Activates

STAT1 in HEK293T Cells

(A) Two ErbB4-derived phosphopeptides repre-

senting pTyr1035 and pTyr1128 bind the core

domain of STAT1 on protein microarrays, with

KDs of 1.55 mM and 2.06 mM, respectively.

(B) When HEK293T cells are transfected with

ErbB4, STAT1 is phosphorylated on Tyr701 and

copurifies with ErbB4.

(C and D) Electromobility shift assays show that

DNA sequences derived from the promoter re-

gions of IRF1 and ICSBP are shifted upon the ad-

dition of lysates derived from ErbB4-transfected

HEK293T cells. Both DNA sequences are estab-

lished targets of STAT1/STAT1 homodimers.

on Tyr701 in ErbB4-transfected cells, but

not in cells transfected with a control pro-

tein (GFP; Figure 3B). In addition, we

found that endogenous phospho-STAT1

physically associates with ErbB4: it cop-

urifies with ErbB4 when the receptor is

immunoprecipitated from ErbB4-trans-

fected cells (Figure 3B). Because STAT1

is activated in an HRGb1-independent

fashion, we asked whether the two re-

cruitment sites for STAT1 are phosphory-

lated under these conditions. We there-

fore repeated our targeted mass

spectrometry experiments using ErbB4

that had been immunoprecipitated from

unstimulated cells and found that both

Tyr1035 and Tyr1128 were indeed phos-

phorylated. It has previously been shown

that, upon g-secretase-dependent cleav-

age, ErbB4 can physically associate with

STAT5A and translocate to the nucleus

(Williams et al., 2004). We do not observe

cleavage of ErbB4 in HEK293T cells and

submit that recruitment and activation of

STAT1 may provide a way for ErbB4 to

activate STAT signaling when it is

expressed as its noncleavable isoform

(Carpenter, 2003) or when it is expressed in cells where proteo-

lytic processing does not occur.

When STAT1 is activated in the cytosol, it translocates to the

nucleus where it can function as a transcription factor. STAT1 is

known to function either as a STAT1/STAT1 homodimer or as

a member of the ISGF3 ternary complex which comprises

STAT1, STAT2, and IRF9. Both complexes have been observed

in HEK293T cells (Parisien et al., 2001). Because STAT2 did

not recognize any of the ErbB4-derived phosphopeptides

(Figure 2A)—but was clearly active because it bound phospho-

peptides derived from EGFR, ErbB2, and ErbB3—our microarray

results suggest that STAT1 forms a homodimer in response to

ErbB4 activation, rather than the ISGF3 complex. To test this pre-

diction, we transfected HEK293T cells with ErbB4 and prepared

cellular lysates. We then added 32P-labeled DNA to the lysates

and used an electromobility shift assay to determine which
Chemistry & Biology 15, 808–817, August 25, 2008 ª2008 Elsevier Ltd All rights reserved 813
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STAT1-responsive sequences were recognized by components

of the lysate. We found that DNA sequences derived from the pro-

moter regions of IRF1 and ICSBP, which are well-established

binding sites for the STAT1/STAT1 homodimer (Schindler et al.,

2007), were shifted in their electromobility (Figures 3C and 3D).

In contrast, sequences derived from the ISG15 promoter region,

which is a well-established binding site for the ISGF3 complex

(Tang et al., 2007; Wagner et al., 2002), were not shifted (data

not shown). These results demonstrate that noninteractions ob-

served on the microarrays, as well as positive interactions, can in-

form biological investigations of RTK signaling.

System-Level Properties of ErbB4
In addition to providing a list of previously unrecognized bio-

physical interactions, our arrays also offer an unbiased, sys-

tem-level view of ErbB4 that was previously unavailable. Most

noticeably, the interaction map in Figure 2A shows that ErbB4

is recognized by very few signaling proteins. On average, each

phosphopeptide is recognized by 1.5 SH2 or PTB domain-con-

taining proteins. It is possible we have overrepresented pTyr

sites on ErbB4 due to overexpression of the receptor. However,

even if we eliminate the five phosphopeptides that are not recog-

nized by any SH2 or PTB domains, each phosphopeptide is still

only recognized by, on average, 2.2 proteins. This contrasts

sharply with what we observed for phosphopeptides derived

from EGFR, ErbB2, and ErbB3, which are recognized by, on av-

erage, 9.8, 18.4, and 11.4 proteins, respectively (Figure 2B).

Thus, although we observed very little selectivity at the level of

ErbB4 phosphorylation, there is striking selectivity at the level

of protein recruitment.

Figure 4. Venn Diagrams Illustrating which

Signaling Proteins Can Be Recruited by

Each of the ErbB Receptors

Proteins are considered able to be recruited by

a receptor if they contain at least one SH2 or

PTB domain that binds at least one phosphopep-

tide derived from that receptor with a KD % 2 mM.

(A) Venn diagram for EGFR, ErbB2, and ErbB3.

The 14 proteins that can be recruited by ErbB4

are indicated by light blue Xs.

(B–D) Venn diagrams for (B) EGFR and ErbB4; (C)

ErbB2 and ErbB4; and (D) ErbB3 and ErbB4.

When we consider the identity of the

proteins that recognize pTyr sites on

EGFR, ErbB2, and ErbB3, we note

that each receptor is able to recruit

proteins that the other receptors cannot

(Figure 4A). This suggests that heterodi-

meric complexes involving EGFR,

ErbB2, and ErbB3 should all induce

a broader range of signals than any of

the individual homodimers. Consistent

with this observation, heterodimers in-

volving EGFR, ErbB2, and ErbB3 have

been shown to be more transforming

than any of the homodimers (Alimandi

et al., 1995; Wallasch et al., 1995) and

ErbB2-ErbB3, EGFR-ErbB3, and EGFR-ErbB2 are all more mito-

genic than EGFR-EGFR and ErbB2-ErbB2 when transfected into

murine hematopoietic cells (Pinkas-Kramarski et al., 1996). In

contrast, all of the signaling proteins that recognize phospho-

peptides derived from ErbB4 also recognize phosphopeptides

derived from at least one of the other three ErbB receptors,

and most of these proteins (11 of 14) recognize peptides derived

from all three (Figure 4).

That the recruitment profile of ErbB4 constitutes a subset of the

recruitment profiles of EGFR, ErbB2, and ErbB3 suggests

a unique biological role for ErbB4. Because ErbB4 recognizes

an array of extracellular ligands and has an active kinase domain,

it can function on its own as a highly selective homodimer. In

addition, it can heterodimerize with ErbB2, which has no known

ligand, or with ErbB3, which lacks an active kinase, to enable

these two receptors to signal independently from EGFR. ErbB4

thus has the potential to complement the defective properties

of ErbB2 and ErbB3 without adding substantially to the range of

signaling pathways they induce. In effect, it can enable ErbB2

and ErbB3 to signal as though they were active homodimers.

The protein microarray data also provide a potential explana-

tion for the observed protective role of ErbB4 in cancer. Recent

epidemiological studies of bladder and breast cancers have

shown that expression of ErbB4 correlates with improved prog-

nosis when at least two other ErbBs are also expressed (Barnes

et al., 2005; Memon et al., 2004, 2006a, 2006b; Tovey et al.,

2004). In the presence of an appropriate ligand, ErbB4 can inter-

act with each of the other ErbB receptors. We submit that ErbB4

acts like a buffer, decreasing levels of the more oncogenic heter-

odimers in favor of more benign complexes with itself.
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Interestingly, in cancers of the brain where ErbB2 is expressed

but EGFR and ErbB3 are not, ErbB4 expression correlates with

poor prognosis (Gilbertson et al., 1997, 2002). In this case, we

submit that ErbB4 heterodimerizes with ErbB2 and thus pro-

motes, rather than dampens, ErbB2 signaling.

In summary, we have combined the use of tandem mass spec-

trometry with quantitative protein microarray technology to gain

insight into the signaling properties of ErbB4, a receptor that

has received considerably less attention to date than the other

three ErbB family members. Through this broad and unbiased ap-

proach, we were able to identify a novel pathway activated by

ErbB4, as well as to propose a model that explains the protective

effects of ErbB4 expression in cancer. Because our core strategy

did not rely on the use of ErbB4-specific reagents, it is relatively

straightforward to apply this same approach systematically to

the investigation of other RTKs about which little is known.

SIGNIFICANCE

The first three members of the ErbB family of receptor tyro-

sine kinases have been studied extensively and have been

shown to mediate a wide variety of cellular processes by ac-

tivating a diverse range of signaling proteins. They are po-

tent oncogenes and are frequently misregulated in cancer.

In contrast, ErbB4 has received much less attention, is not

a potent oncogene, and even appears to play a protective

role in some cancers. In order to gain insight into the signal-

ing properties of ErbB4 in an unbiased fashion, we used tan-

dem mass spectrometry to identify sites of tyrosine phos-

phorylation. We then used protein microarrays comprising

most of the SH2 and PTB domains encoded in the human

genome to identify and quantify biophysical interactions

between these pTyr sites and the signaling proteins they

recruit. In addition to confirming reported interactions, we

uncovered several previously unrecognized interactions,

including specific interactions with STAT1. We found that

STAT1 physically associates with ErbB4 in HEK293T cells,

is phosphorylated on Tyr701, and forms a STAT1/STAT1 ho-

modimer that binds STAT1-responsive DNA sequences. This

shows that the information revealed by our in vitro microar-

ray experiments can be used to discover previously unrec-

ognized signaling events. On a systems level, we found

that ErbB4 is substantially more selective than the other

ErbB receptors: the proteins it recruits constitute a small

subset of the proteins recruited by each of the other recep-

tors. This suggests that ErbB4 may enable ErbB2 and ErbB3

to signal independently of EGFR, because both ErbB2 and

ErbB3 are normally inactive as homodimers. The highly se-

lective nature of ErbB4 also provides a plausible explanation

for its protective role in cancer. ErbB4 may act like a buffer,

decreasing levels of the more oncogenic ErbB heterodimers

in favor of more benign complexes with itself.

EXPERIMENTAL PROCEDURES

Subcloning of ErbB4

The wild-type sequence of ErbB4 was obtained from the Harvard Institute of

Proteomics, cloned in the vector pDNR-Dual (Clontech, Mountain View, CA,

USA). A Myc tag (50-GCATCAATGCAGAAGCTGATCTCAGAGGAGGACCTG-
Chemistry & Biology 15, 8
30) was introduced between nucleotides 90 and 91 using PCR, and the product

of this reaction was inserted into pDONR-221 using the BP cloning procedure

(Invitrogen, Carlsbad, CA, USA). This vector served as the template for a l-re-

combinase-mediated directional transfer into pDEST-40 (Invitrogen) to create

pDEST-40-ErbB4. Although this construct contains a Myc tag at the N termi-

nus of ErbB4, the tag was not detected by immunoblotting or by mass spec-

trometry and so was presumably removed proteolytically in the HEK293T cells.

Overexpression of ErbB4

HEK293T cells were grown to 50% confluence in Dulbecco’s modified Eagle’s

medium supplemented with 10% fetal bovine serum and 2 mM (L)-Glu and

transfected with either pDEST-40-ErbB4 or a control vector expressing GFP.

All transfections were carried out using Lipofectamine 2000 (Invitrogen) ac-

cording to the manufacturer’s instructions. Following transfection, cells were

allowed to recover for 36 hr, starved of serum for 18–20 hr, and stimulated

for 15 min with 10 nM HRGb1 (R&D Systems, Minneapolis, MN, USA). Cells

were washed with PBS and lysed on ice for 30 min with NP-40 lysis buffer

(50 mM Tris, 150 mM NaCl, 1% NP-40 [v/v], 5 mM EDTA, 5 mM EGTA [pH 8.0]),

supplemented with 1 mM PMSF, 1 mM sodium orthovanadate, 10 mM b-glyc-

erophosphate, 100 ml phosphatase inhibitor cocktail 2 (Sigma Aldrich, St.

Louis, MO, USA), and 1 tablet of complete mini protease inhibitor (Roche

Applied Science, Indianapolis, IN, USA) per 10 ml lysis buffer. Lysate was

centrifuged at 14,000 3 g for 20 min to remove cellular debris.

Immunoprecipitations and Immunoblotting

All immunoprecipitations (IPs) were performed according to standard proce-

dures using 2 mg of primary antibody per mg of lysate. ErbB4 IPs were per-

formed without preclearing using antibody sc-283 (Santa Cruz Biotechnology,

Santa Cruz, CA, USA). Prior to the pTyr IPs, lysates were precleared using 4 mg

of normal mouse or rabbit serum (Santa Cruz Biotechnology) per mg of lysate.

Anti-pTyr IPs were performed using an equimolar mix of p-100 and p-102

antibodies (Cell Signaling Technology, Danvers, MA, USA). Immunoblots were

performed according to standard procedures using the following primary

antibodies: sc-283 (Santa Cruz Biotechnology) or c-erbb-4/HER-4 Ab-2 (Lab

Vision Corporation, Fremont, CA, USA) for ErbB4; p-100 (Cell Signaling Tech-

nology) for phosphotyrosine; STAT1 antibody 9172 (Cell Signaling Technology)

for STAT1; and phospho-STAT1 (Tyr701) antibody 9171 (Cell Signaling Tech-

nology) for pTyr701-STAT1. Immunoblots were developed using either an

Alexa-680-conjugated anti-rabbit antibody or an Alexa-800-conjugated anti-

mouse antibody (LI-COR Biosciences, Lincoln, NE, USA). Membranes were

visualized using an Odyssey infrared imaging system (LI-COR Biosciences).

Mass Spectrometry

Immunoprecipitated proteins were separated on an 8% SDS-polyacrylamide

gel at 100 V for 1 hr and stained with colloidal Coomassie (Invitrogen). The

band corresponding to phospho-ErbB4 was excised from the gel and washed

three times with acetonitrile/water (1:1, v/v). For the untargeted run, the gel

band was split equally and digested with either chymotrypsin or elastase. Pep-

tide sequence analysis of each digestion mixture was performed by microca-

pillary reverse-phase high-performance liquid chromatography coupled with

nanoelectrospray tandem mass spectrometry (mLC-MS/MS) on an LTQ-Orbi-

trap mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). The

Orbitrap repetitively surveyed an m/z range from 395 to 1600, whereas data-

dependent MS/MS spectra on the six most abundant ions in each survey

scan were acquired in the linear ion trap. MS/MS spectra were acquired

with relative collision energy of 30%, 2.5 Da isolation width, and recurring

ions dynamically excluded for 60 s. Preliminary sequencing of peptides was

facilitated with the SEQUEST algorithm and the Uniprot/Swissprot database

(uniprot_sprot.fasta), taking into account the following: appropriate restriction

to chymotrypsin specificity; static modification of cysteine to carboxyamido-

methylcysteine; and differential modification of methionine to its sulfoxide.

Data sets for both digest results were combined in silico, culled of minor con-

taminating keratin or autolytic peptide spectra, and re-searched with

SEQUEST against the ErbB4 sequence without taking into account enzyme

selectivity. Differential modifications of phosphorylated tyrosine, serine, and

threonine residues were included. The discovery of phosphopeptides and sub-

sequent manual confirmation of their MS/MS spectra were facilitated by the in-

house programs MuQuest, GraphMod, and FuzzyIons (Proteomics Browser
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Suite, Thermo Fisher Scientific). For the targeted runs, peptides of interest

were continuously subjected to MS/MS analysis within a 10 min window cen-

tered on their expected retention times.

Peptide Synthesis

Peptides were synthesized at 2 mmol scale in a 96-well plate with an Intavis

MultiPep synthesizer (Koeln, Germany) using standard Fmoc chemistry. Pre-

loaded NovaSyn TGT resin was from Novabiochem (San Diego, CA, USA).

Fmoc-protected amino acids were activated in situ with HBTU/N-methylmor-

pholine and coupled at 5-fold molar excess over peptide. Each coupling cycle

was followed by capping with acetic anhydride. At the end of the synthesis,

peptides were labeled on the resin with 5- (and 6)-carboxytetramethylrhod-

amine (5[6]-TAMRA) from Anaspec (San Jose, CA, USA). 5(6)-TAMRA was

coupled using HATU/diisopropylethylamine at a 7-fold molar excess over pep-

tide. After labeling, the peptides were deprotected and cleaved from the resin

with trifluoroacetic acid/triisopropylsilane/water (38:1:1, v/v/v) and subse-

quently precipitated by addition of cold ether.

Crude peptides were purified by reverse-phase HPLC using a Kromasil 100-

5-C18 semipreparative column (Peeke Scientific, Sunnyvale, CA). Fractions

containing the correct product were identified by MALDI-TOF mass spectrom-

etry using a Voyager DE Pro (Applied Biosystems, Foster City, CA).

Fabrication and Processing of Protein Microarrays

Purified recombinant domains were spotted at a concentration of 40–200 mM

onto 112.5 mm 3 74.5 mm 3 1 mm glass substrates, chemically modified to

display aldehyde functionalities (Erie Scientific Company, Portsmouth, NH,

USA), using a NanoPrint microarrayer (TeleChem International, Sunnyvale,

CA). Ninety-six microarrays (two different sets of 48 identical arrays) were fab-

ricated in an 8 3 12 pattern on the glass, with a pitch of 9 mm. Each array con-

sisted of a 16 3 17 pattern of spots, with a center-to-center spacing of 250 mm.

All proteins were spotted in quadruplicate. Following a 1 hr incubation, the

glass was attached to the bottom of a bottomless 96-well microtiter plate

(Greiner Bio-One, Kremsmuenster, Austria) using an intervening silicone gas-

ket (Grace Bio-Labs, Bend, OR). The arrays were stored at �80�C. Immedi-

ately before use, the plates were quenched with buffer A (20 mM HEPES,

100 mM KCl, 0.1% Tween 20 [pH 7.8]) containing 1% BSA (w/v) for 30 min

at room temperature, followed by several rinses with buffer A. Arrays were

probed with eight different concentrations of 5(6)-TAMRA-labeled peptides,

dissolved in buffer A: 5 mM, 3 mM, 2 mM, 1 mM, 500 nM, 200 nM, 100 nM,

and 10 nM. Following a 1 hr incubation at room temperature, the peptide

solution was removed and the arrays were washed with 150 ml buffer A for

10 s. The arrays were rinsed briefly with ddH2O and spun upside down in a

centrifuge for 1 min to remove residual water.

Electromobility Shift Assays

DNA oligonucleotides corresponding to the interferon-stimulated response

elements of IRF1, ICSBP, and ISG15 were synthesized with the following se-

quences: IRF1: 50-GATCGATTTCCCCGAAATG-30; ICSBP: 50-AGTGATTTCTC

GGAAAGAGAG-30; ISG15a: 50-GCTTCAGTTTCGGTTTCCCTTTCCCGAG-30;

and ISG15b: 50-GGGAAAGGGAAACCGAAACTGAA-30. Oligonucleotides

were labeled using [g-32P]ATP and T4 polynucleotide kinase (New England

Biolabs, Ipswich, MA, USA) according to standard procedures. Five micrograms

of lysate in a 15 ml volume was incubated for 30 min with 1 mg dIdC (to block

nonspecific binding). Labeled oligonucleotide was then added and the reac-

tion was incubated for an additional 20 min. Samples were loaded on a 6%

TBE-polyacrylamide gel and run for 2.5 hr. The gel was dried and exposed

to X-ray film overnight.

SUPPLEMENTAL DATA

Supplemental Data include one figure and one table and can be found with

this article online at http://www.chembiol.com/cgi/content/full/15/8/808/

DC1/.
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